PUMP STATION DESIGN

FLUIDS POWER AND ADVANCED FLUID MECHANICS

Submitted by, Nived Rajan(19492925) Nikhil Thomas (19491540) Jebin Siby (20493696)

Contents

List of figures1
List of tables1
Introduction2
2.Assumptions
Pumping unit 1 (railroad car to the clean coolant tank)
Calculations for Pump 1 (Railroad car to the clean storage tank)4
Pumping unit 2 (clean coolant tank to the reservoir)
Calculations for Pump 2 (clean coolant tank to the reservoir)
Pumping unit 3 (reservoir to the dirty coolant tank)7
Calculations for Pump 3 (reservoir to the dirty coolant tank)
Reservoir tank to the dirty coolant tank9
Design layout of the pump station10
Results12
Pump 112
Pump 213
Pump 314
Discussion15
References16

List of figures

Figure 1 plot plan for the factory building	2
Figure 2 process flow diagram	2
Figure 3 design layout (top view) (via AutoCAD)	
Figure 4 side view (left side of the building) (via AutoCAD)	11
Figure 5 front view (via AutoCAD)	11
Figure 6 Pump selection graph of pump 1	12
Figure 7 Pump selection graph of pump 2	
Figure 8 Pump selection graph of pump 3	

List of tables

Table 1 Calculations for Pump	1	4
Table 2 Calculations for Pump	2	6
Table 3 Calculations for Pump	3	8

Introduction

The aim of this project is to design a pump station for a machining unit to provide required coolant. The design includes deciding the position of the tanks, selecting pumps and the usage of appropriate fittings. Figure 1 shows the layout of the plant. Fresh coolant are carried by the trains and delivers to the unit and the dirty coolant after its use are carried away via road.

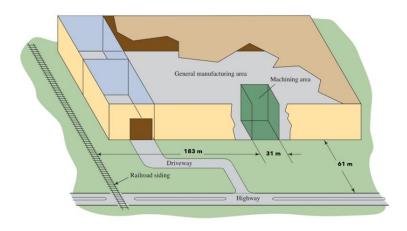


Figure 1 plot plan for the factory building

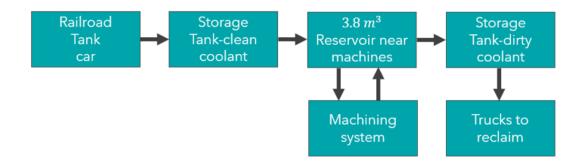


Figure 2 process flow diagram

Figure 2 shows the process flow diagram of the pumping unit, where the coolant comes through a railroad tank car to the machining area and this coolant is then transferred to a clean storage tank. From the storage tank the coolant needs to be transferred to a reservoir with a capacity of 3.8 m3.From the 3.8m3 reservoir tank the coolant has to go to machines and then recirculate back to the same reservoir. In every week the 3.8 reservoir is emptied and the dirty coolant in the reservoir is fed to a dirty storage tank and dirty coolant is carried out by trucks through roads in every month.

Assumptions

Before starting the calculations, we have to do some assumptions,

- viscosity and vapour pressure of the coolant are 1.5 times that of water at any given temperature
- The clean storage tank and the reservoir tank is place above the roof top as close as the railway path.
- The dirty coolant tank is paced on the ground level and the dirty coolant from the reservoir reaches the dirty coolant tank through gravity
- Pumping unit to the machining area from the reservoir tank for circulation is not considered
- The hight of the truck which carry away the dirty coolants is assumed to 4 meters.

Pumping unit 1 (railroad car to the clean coolant tank)

Clean storage tank dimensions = $10 \times 6 \times 1 \text{ m}^3$

Placed at the front left corner of the building (roof top)

Filling time = 75 minutes

Volume flow rate = $0.0134 \text{ m}^3/\text{s}$

Elevation difference = 11 m

Suction line

Diameter of suction pipe = 4 inch = 0.1023 m

Length of suction pipe = 20 m

Material of the pipe = scheduled 40 steel

Fitting used = fully opened gate valve

Discharge line

Diameter of suction pipe = 3 inch = 0.0779m Length of suction pipe = 28 m Material of the pipe = scheduled 40 steel Fitting used = 3/4 opened gate valve, one long radius elbow and 2 standard elbows

MG7024				System curves SI		
	Sy	stem Data:	SI metric l	Units		
Volume flow rate Q(m^	3/s)	0.0134		Elevation at point 1 =	0	
Pressure at point 1(K.P	a)	101	325	Elevation at point 1 =	11	
Pressure at point 2 (K.	Pa)	101	325			
Velocity at point 1 (m/	s)	0		Velocity head at point 1	0	
Velocity at point 2(m/	s)	0		Velocity head at point 2	0	
Fluid P	operties			Vapour Pressure	11.064	
				kinematic		
Specific Weight (kN/m		9.22	E+03	viscosity(m^2/s)	9.84E-07	
	e 1:			Pipe 2:		
Diameter D (m)		0.1	023	Diameter(m)	0.0779	
Wall Roughness (m)		0.000	0015	Wall Roughness(m)	0.0000015	
Length L (m)		2	0	Length L(m)	28	
Area A (m^2)		0.0082	15253	Area(m^2)	0.00476370	
E/D		1.4662	28E-05	E/D	1.92555E-0	
L/D		195.50	34213	L/D	359.435173	
Flow Velocity (m/s)		1.6311	.12343	Flow Velocity (m/s)	2.81293842	
Velocity Head(m)		0.1356	02828	Velocity Head (m)	0.40329371	
Reynolds Number		16957	5.0089	Reynolds Number	222690.959	
Friction factor	Friction factor		178	Friction Factor	0.0168	
Head Loss(m)		0.4718	92538	Head Loss	2.43529347	
Energy Losses -pipe 1	к	Quantity	Total K			
Gate valve	0.128	1	0.128	Energy loss hl1	0.01735716	
Entrance	0	0	0	Energy loss	0	
Element	0	0	0	Energy loss	0	
Element	0	0	0	Energy loss	0	
Element	0	0	0	Energy loss	0	
Element	0	0	0	Energy loss	0	
Element	0	0	0	Energy loss	0	
Total			0.128	Total (m)	0.01735716	
Energy Losses -pipe 2	к	Quantity	Total K			
Gate Valve (3/4 open)	0.595	1	0.595	Energy Loss hl1	0.23995975	
Standard Elbow	0.51	2	1.02	Energy Loss	0.41135958	
Long radius elbow	0.34	1	0.34	Energy Loss	0.13711986	
Element	0	0	0	Energy loss	0	
Element	0	0	0	Energy loss	0	
Element	0	0	0	Energy Loss	0	
Total		•	1.955	Total (m)	0.78843920	
Total energy loss(m)					0.80579636	
Total head on pump Ha (m)					14.7129823	
NPSHA (m)					9.298960334	

Calculations for Pump 1 (Railroad car to the clean storage tank)

 Table 1 Calculations for Pump 1

Pumping unit 2 (clean coolant tank to the reservoir)

reservoir tank dimensions = $2 \times 2 \times 1 \text{ m}^3$

location- roof top, above the machining area, placed on the left side of the machining area(on the front), 146 m apart from the clean coolant tank.

Filling time = 20 minutes

Volume flow rate = $2.73 \times 10^{-3} \text{ m}^{3} \text{ /s}$ Elevation difference = 1 m

Suction line

Diameter of suction pipe = 3 inch = 0.0549 m

Length of suction pipe = 46 m

Material of the pipe = scheduled 40 steel

Fitting used = one Foot Valve (hinged disc type), one Elbow standard, one Check valve (swing type)

Discharge line

Diameter of suction pipe = 1.5 inch = 0.0368 m

Length of suction pipe = 100 m

Material of the pipe = scheduled 40 steel

Fitting used = 3/4 opened gate valve, 3 standard elbows and 3 check valves

MG7024				System curves SI	
	Syste	em Data: Sl	metric U		
Volume flow rate Q (m3/s)		2.738		Elevation at point 1(m)	0.3
Pressure at point 1(kPa)		101.325		Elevation at point 1 (m)	0.7
Pressure at point 2(kPa)			325		
Velocity at point 1(m/s)		0		Velocity head at point 1	0
Velocity at point 2(m/s)		0		Velocity head at point 2	0
	Fluid Properties			Vapour Pressure	11.064
•				kinematic viscosity	
Specific Weight (kN/m3)		9.22E+03		(m^2/s)	9.84E-07
Pipe 1:				Pipe 2:	
Diameter D (m)		0.07	79	Diameter (m)	0.04009
Wall Roughness(m)		0.000	0015	Wall Roughness (m)	0.0000015
Length L(m)		46	;	Length L (m)	100
Area A(m^2)		0.00476	53702	Area (m^2)	0.001261658
E/D		1.9255	5E-05	E/D	3.74158E-05
L/D		590.500	06418	L/D	2494.387628
Flow Velocity(m/s)		0.573083725		Flow Velocity (m/s)	2.16381874
Velocity Head(m)		0.01673	39294	Velocity Head (m)	0.238639732
Reynolds Number		45369.1	12821	Reynolds Number	88158.02165
Friction factor		0.016	192	Friction Factor	0.015636
Head Loss Due to F(m)		0.160050861		Head Loss due to F(m)	9.30748528
			Total		
Energy Losses -pipe 1	к	Quantity	к		
Foot Valve (hinged disc type)	1.35	1	1.35	Energy loss hl1	0.022598047
Elbow standard	0.54	1	0.54	Energy loss	0.009039219
Check valve (swing type)	1.8	1	1.8	Energy loss	0.03013073
Element	0	0	0	Energy loss	0
Element	0	0	0	Energy loss	0
Element	0	0	0	Energy loss	0
Element	0	0	0	Energy loss	0
Total			3.69	Total (m)	0.061767996
Energy Laster size 3	~	Ourselie	Total K		
Energy Losses -pipe 2 Gate Valve (3/4 open)	К 0.665	Quantity 1	0.665	Energy Loss hl1	0.158695422
Elbow	0.665	3	1.71	Energy Loss III	0.408073942
Check valve (swing type)	1.9	3	5.7		1.360246472
Element	0	1	0	Energy Loss Energy loss	0
	0	0	0		0
Element Element	0	0	0	Energy loss	0
				Energy Loss	-
Total 8.075 Total				1.927015836	
Total energy loss (m)				1.988783832	
Total head on pump Ha (m)				11.85631997	
NPSHA (m)					9.866391175

Calculations for Pump 2 (clean coolant tank to the reservoir)

Table 2 Calculations for Pump 2

Pumping unit 3 (reservoir to the dirty coolant tank)

Dirty coolant tank dimensions = $5 \times 3 \times 2 \text{ m}^3$

Location - below the reservoir tank, on the ground, left side of the machining area

Filling time = $30 \min$

Volume flow rate = $0.01 \text{ m}^3 \text{ /s}$ Elevation difference = 1 m

Suction line

Diameter of suction pipe = 4 inch = 0.1023 m Length of suction pipe = 25 m Material of the pipe = scheduled 40 steel Fitting used = one fully opened gate valve, one Check valve (swing type)

Discharge line

Diameter of suction pipe = 3 inch = 0.0779 m

Length of suction pipe = 80 m

Material of the pipe = scheduled 40 steel

Fitting used = 3/4 opened gate valve, 2 standard elbows, one long radius elbow and 3 check valves

MG7024				System curves SI		
Mara		tem Data: S	il motric I l		31	
Volume flow rate Q (m3/				Elevation at point 1 (m)	0.3	
		1.00E-02 101.325		Elevation at point 1 (m)	2	
Pressure at point 1 (K.pa)		101.325		clevation at point 1 (iii)	2	
Pressure at point 2 (K.pa)	101.525		Velocity head at point			
Velocity at point 1 (m/s)		o		1(m)	0	
				Velocity head at point		
Velocity at point 2 (m/s)		()	2(m)	0	
Fluid Prop	perties			Vapour Pressure	11.064	
				kinematic viscosity		
Specific Weight (kN/m3)		9.22E+03		(m^2/s)	9.84E-07	
Pipe	1:			Pipe 2:		
Diameter D (m)		0.10		Diameter (m)	0.0779	
Wall Roughness (m)		0.000		Wall Roughness (m)	0.0000015	
Length L (m)		2		Length L (m)	80	
Area A(m^2)		0.0082	15253	Area	0.004763702	
E/D		1.4662	28E-05	E/D	1.92555E-05	
L/D		244.37	92766	L/D	1026.957638	
Flow Velocity (m/s)		1.2172	48017	Flow Velocity (m/s)	2.09920778	
Velocity Head (m)		0.0755	Velocity Head (m)		0.22460108	
Reynolds Number		12654	9.2603	Reynolds Number	166187.2828	
Friction factor		0.0	17	Friction Factor	0.01619	
Head Loss (m)		0.3137	41844	Head Loss (m)	3.734317422	
Energy Losses -pipe 1	к	Quantity	Total K		_	
check valve (swing type)	1.6	1	1.6	Energy loss hl1	0.120831212	
Gate Valve (Fully opened)	0.128	1	0.128	Energy loss	0.009666497	
Element	0	0	0	Energy loss	0	
Element	0	0	0	Energy loss	0	
Element	0	0	0	Energy loss	0	
Element	0	0	0	Energy loss	0	
Element	0	0	0	Energy loss	0	
Total			1.728	Total (m)	0.130497709	
Energy Losses -pipe 2	к	Quantity	Total K			
Gate Valve (3/4 open)	0.595	1	0.595	Energy Loss hl1	0.133637646	
long radius Elbow	0.34	1	0.34	Energy Loss	0.07636436	
Check valve	1.7	3	5.1	Energy Loss	1.14546554	
Standard elbow	0.51	2	1.02	Energy loss	0.22909310	
Element	0	0	0	Energy loss	0	
Element	0	0	0	Energy Loss	0	
Total					1.58456066	
Total energy loss(m)			Total (m)	1.715058374		
Total head on pump Ha(m)				7.463117641		
NPSHA(m)					9.64397048	

Calculations for Pump 3 (reservoir to the dirty coolant tank)

 Table 3 Calculations for Pump 3

Reservoir tank to the dirty coolant tank

The coolant from the reservoir reaches the dirty coolant tank through gravity. An 8-inch scheduled 40 steel pipes is used for this and a gate valve is placed between the pipe for regulating the flow. One elbow is paced at the inlet and one is on the exit and a wide opening is provided at the inlet. Pipe having large diameter is selected because dirty coolant may consist of large impurities. I t also enables high volume flow rate when moves by gravity.

Design layout of the pump station

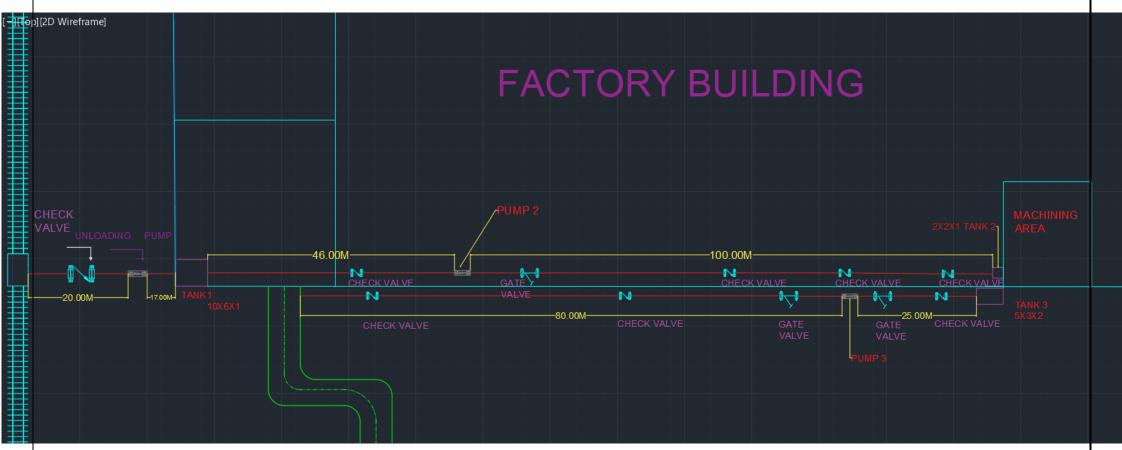
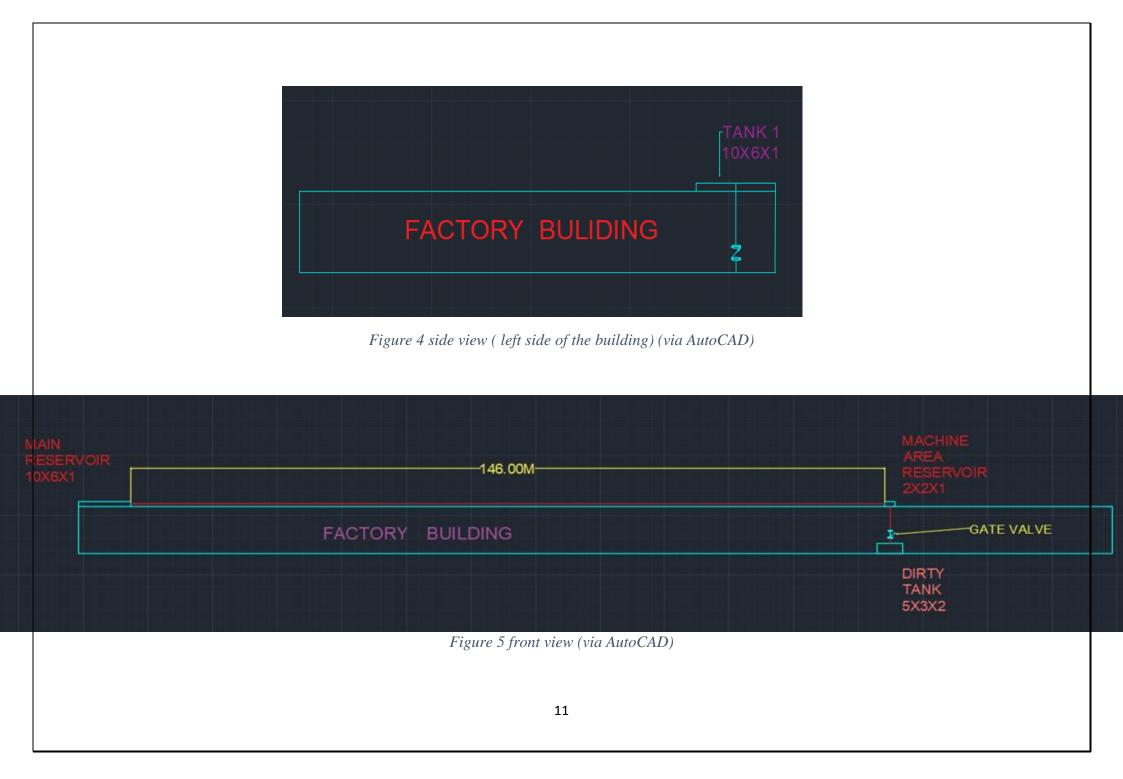



Figure 3 design layout (top view) (via AutoCAD)

Results

Pump 1

Major losses (losses due to friction) = 1.994 m

Minor losses (losses due to fittings) = 0.552 m

Total head loss = 2.223 m

Total head = 15.218 m

NPSHA = 10.51 m

NPSHR = 1.2 m

Pump selected = 3x4 – 8" impellor centrifugal pump at 1750 rpm

Efficiency = 63%

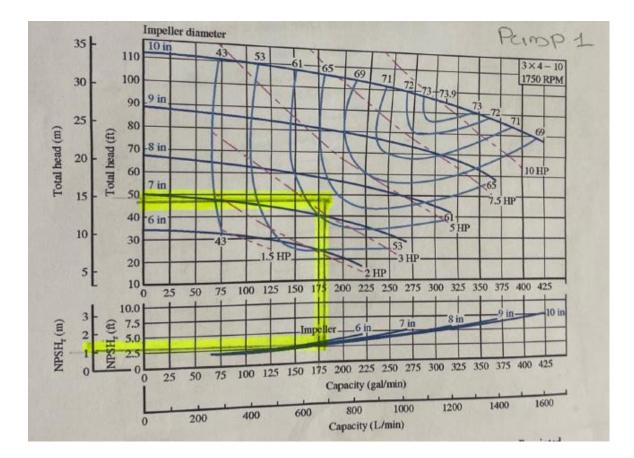


Figure 6 Pump selection graph of pump 1

Pump 2

Major losses (losses due to friction) = 5.085 m

Minor losses (losses due to fittings) = 1.068 m

Total head loss = 6.154 m

Total head = 11.941 m

NPSHA = 11.026 m

NPSHR = 0.4 m

Pump selected = 1¹/₂ X 3 – 6" impellor centrifugal pump at 1750 rpm

Efficiency = 56%

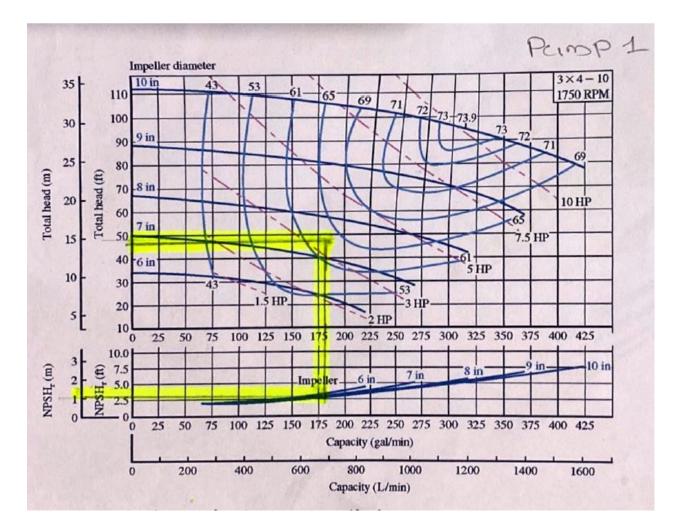


Figure 7 Pump selection graph of pump 2

Pump 3

Major losses (losses due to friction) =1.9496 m Minor losses (losses due to fittings) =0.8618 m Total head loss = 2.812 m

Total head = 7.462 m

NPSHA = 10.932 m

NPSHR = 1 m

Pump selected = 3x4 – 9" impellor centrifugal pump at 1750 rpm

Efficiency = 57%

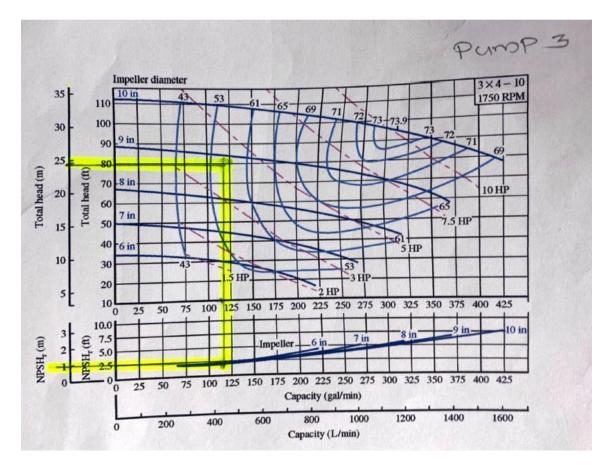


Figure 8 Pump selection graph of pump 3

Discussion

For a fully efficient pump system appropriate use of pumps and appropriate positioning of the tanks are prerequisite. In our design, the clean coolant tank having a capacity of 60 m³ (10x6x1) is placed on the extreme front left of the roof top of the building. Since the pump have to pump a large volume, the tank is placed as close as the railways but if the tank is placed on the ground level the power and time required to pump coolant to the reservoir tank increases. Since machine area is working 24/7, we have to pump coolant from the clean coolant tank to the reservoir frequently. So, to reduce the head on the pump from clean coolant tank and the reservoir tank the clean coolant tank is placed above the roof top. The total head and the total energy loss of the pump 1 is found to be 15.218 m and 2.223 m respectively. An 8-inch impeller, 1750 rpm pump is selected for this and the tank fillies in 75 minutes.

The reservoir tank having a capacity of 4 m³ (2x2x1) is placed as close as the left side of the machining area. Since the machining unit is working 24x7 it requires continuous supply of coolant the clean coolant tank and the reservoir tank are placed on the roof top on the same elevation, the potential head was low which will reduce the total head on pump (Ha) and so we can achieve high volume flow rate using low power pump and a 6 inch impeller, 1750 rpm pump is selected. Since the discharge line in the pump 3 is long 3 checks valves are provided between this line and helpful periodic maintenance. The reservoir tank is assumed to be fills in 20 minutes high volume flow rate because the machine area is running 24x7 and thereby it reduces the filling and emptying time of the reservoir tank. The total losses of the pump 3 was found to be 11.941 m and the total head on the pump is 6.154 m.

The dirty coolant tank of dimension 30 m³ (15x3x2) is placed straight down to the reservoir tank at the ground level for easy movement of the coolant by gravity drain to the dirty coolant tank, this would enables the emptying of the reservoir tank very quickly. The dirty coolant is pumped from the dirty tank to the truck in the driveway which is 105 m apart. For the pump from the dirty coolant tank to the trucks, the total head is found to be 7.462 m and the total losses due to friction and fittings is 2.812 m. since the height of the truck is assumed to be 4 meters, pumps having 9-inch impeller and 1750 rpm is selected and it can empty the tank in 30 minutes. Checks valves are provided within the suction and delivery pipe for maintenance and a gate valve is used at the discharge line for regulating the valve.

References

Free CAD Blocks, download +120k blocks .DWG, .RVT. Bibliocad. (2020). Retrieved 20 November 2020, from <u>https://www.bibliocad.com/en/</u>.

Mott, R. L., & Untener, J. A. (2015). Applied fluid mechanics : Global edition. ProQuest Ebook Central <u>http://ebookcentral.proquest.com</u>

Autodesk. (2019). [Windows].